#!/usr/bin/env python3 import cv2 import torch import yt_dlp import subprocess import time from flask import Flask, Response import numpy as np import warnings warnings.simplefilter("ignore", category=FutureWarning) #ignore torch warnings app = Flask(__name__) YOUTUBE_URL = "https://www.youtube.com/watch?v=i3w7qZVSAsY" # Stream URL example CONFIDENCE_THRESHOLD = 0.25 # Confidence threshold for object detection MODEL = "yolov5s" # YOLO model version (yolov5s, yolov5m, etc.) # Load YOLO5 model print("Loading YOLOv5 model...") model = torch.hub.load("ultralytics/yolov5", "custom", path=MODEL, force_reload=True) print("YOLOv5 loaded successfully!") def get_stream_url(): """Fetch fresh 720p YouTube stream URL using yt-dlp.""" ydl_opts = {'quiet': True, 'format': 'bestvideo[height=720]'} with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(YOUTUBE_URL, download=False) return info_dict.get("url", None) def generate_frames(): """Capture video frames, apply object detection, and stream as MJPEG.""" stream_url = get_stream_url() if not stream_url: print("❌ Failed to fetch stream URL!") return print("🎥 Starting FFmpeg stream...") ffmpeg_process = subprocess.Popen([ "ffmpeg", "-re", "-i", stream_url, "-r", "10", # frame rate to 10 FPS "-fflags", "nobuffer", "-flags", "low_delay", # buffering delay "-f", "rawvideo", "-pix_fmt", "bgr24", "pipe:1" ], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=10**8) while True: raw_frame = ffmpeg_process.stdout.read(1280 * 720 * 3) # Read raw BGR frame for 720p if not raw_frame: print("❌ No frame received!") break frame = np.frombuffer(raw_frame, np.uint8).reshape((720, 1280, 3)) # Convert to NumPy array # Run YOLO object detection results = model(frame) detections = results.pandas().xyxy[0] # Convert detections to Pandas DataFrame if detections.empty: print("No objects detected in this frame.") else: print(f"✅ Detected {len(detections)} objects!") print(detections[["name", "confidence"]]) # Print detected object names and confidence # Draw bounding boxes for _, row in detections.iterrows(): if row["confidence"] > CONFIDENCE_THRESHOLD: x1, y1, x2, y2 = int(row["xmin"]), int(row["ymin"]), int(row["xmax"]), int(row["ymax"]) label = f"{row['name']} ({row['confidence']:.2f})" cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2) # red bounding box cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Encode and yield the frame as JPEG _, buffer = cv2.imencode('.jpg', frame) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + buffer.tobytes() + b'\r\n') @app.route('/video') def video_feed(): """Stream processed video frames.""" return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': print("Running at http://localhost:5000/video") app.run(host='0.0.0.0', port=5000, debug=True, threaded=True)