#!/usr/bin/env python3 import cv2 import torch import yt_dlp import subprocess import time import os import numpy as np from flask import Flask, Response import warnings warnings.simplefilter("ignore", category=FutureWarning) app = Flask(__name__) YOUTUBE_URL = "https://www.youtube.com/watch?v=t45_gP7I82I" # stream URL CONFIDENCE_THRESHOLD = 0.3 # Confidence threshold for object detection MODEL = "yolov5s" # YOLO model version (yolov5s, yolov5m, etc.) # Load YOLOv5 model print("🔄 Loading YOLOv5 model...") model = torch.hub.load("ultralytics/yolov5", "custom", path=MODEL, force_reload=True) print("✅ YOLOv5 loaded successfully!") # Load object list from file OBJECT_LIST_FILE = "objectlist.txt" if os.path.exists(OBJECT_LIST_FILE): with open(OBJECT_LIST_FILE, "r") as f: OBJECT_LIST = set(line.strip().lower() for line in f if line.strip()) else: OBJECT_LIST = set() def get_stream_url(): """Fetch fresh 720p YouTube stream URL using yt-dlp.""" ydl_opts = {'quiet': True, 'format': 'bestvideo[height=720]'} with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(YOUTUBE_URL, download=False) return info_dict.get("url", None) def generate_frames(): """Capture video frames, apply object detection, and stream as MJPEG.""" stream_url = get_stream_url() if not stream_url: print(" Failed to fetch stream URL!") return print("🎥 Starting FFmpeg stream...") ffmpeg_process = subprocess.Popen([ "ffmpeg", "-re", "-i", stream_url, "-f", "rawvideo", "-pix_fmt", "bgr24", "pipe:1" ], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=10**8) frame_width, frame_height = 1280, 720 # Set video frame size while True: raw_frame = ffmpeg_process.stdout.read(frame_width * frame_height * 3) # Read raw BGR frame if not raw_frame: print("No frame received!") break frame = np.frombuffer(raw_frame, np.uint8).reshape((frame_height, frame_width, 3)) # Convert to NumPy array # Run YOLO object detection results = model(frame) detections = results.pandas().xyxy[0] # Convert detections to Pandas DataFrame if detections.empty: print("No objects detected in this frame.") frame = frame.copy() # Make a writable copy frame[:] = 0 # Make entire frame black else: print(f"Detected {len(detections)} objects!") print(detections[["name", "confidence"]]) # Print detected object names and confidence mask = np.zeros_like(frame) # Create black mask for _, row in detections.iterrows(): if row["confidence"] > CONFIDENCE_THRESHOLD and row["name"].lower() in OBJECT_LIST: x1, y1, x2, y2 = int(row["xmin"]), int(row["ymin"]), int(row["xmax"]), int(row["ymax"]) # Expand bounding box by 75px x1, y1 = max(0, x1 - 75), max(0, y1 - 75) x2, y2 = min(frame_width, x2 + 75), min(frame_height, y2 + 75) # Copy detected object to mask mask[y1:y2, x1:x2] = frame[y1:y2, x1:x2] #dont draw bounding box #cv2.rectangle(mask, (x1, y1), (x2, y2), (0, 255, 0), 2) #label = f"{row['name']} ({row['confidence']:.2f})" #cv2.putText(mask, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) frame = mask # Replace original frame with masked frame # Encode and yield the frame as JPEG _, buffer = cv2.imencode('.jpg', frame) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + buffer.tobytes() + b'\r\n') @app.route('/video') def video_feed(): """Stream processed video frames.""" return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': print("Running at http://localhost:5000/video") #port app.run(host='0.0.0.0', port=5000, debug=True, threaded=True)