block out persons, currently cpu only

This commit is contained in:
ashok 2025-04-05 03:34:25 -04:00
parent 3558ef8202
commit b92c8fdce3

View file

@ -0,0 +1,79 @@
import cv2
import numpy as np
import subprocess
import yt_dlp
from ultralytics import YOLO
from flask import Flask, Response
app = Flask(__name__)
# currently cuda not working with torch version, use cpu
YOUTUBE_URL = "https://www.youtube.com/watch?v=i3w7qZVSAsY" # Example stream
CONFIDENCE_THRESHOLD = 0.25
MODEL_PATH = "yolov8n.pt" # Using YOLOv8 nano for speed
# Load YOLOv8 model
print("Loading YOLOv8 model...")
model = YOLO(MODEL_PATH)
model.to("cpu") # set for cpu
print("YOLOv8 loaded successfully!")
def get_stream_url():
"""Fetch fresh 720p YouTube stream URL."""
ydl_opts = {'quiet': True, 'format': 'bestvideo[height=720]'}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(YOUTUBE_URL, download=False)
return info_dict.get("url", None)
def generate_frames():
"""Capture video frames, apply object detection, and anonymize persons."""
stream_url = get_stream_url()
if not stream_url:
print("Failed to fetch stream URL!")
return
print("Starting FFmpeg stream...")
ffmpeg_process = subprocess.Popen([
"ffmpeg", "-re", "-i", stream_url, "-r", "10", # Set frame rate to 10 FPS
"-fflags", "nobuffer", "-flags", "low_delay",
"-f", "rawvideo", "-pix_fmt", "bgr24", "pipe:1"
], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=10**8)
while True:
raw_frame = ffmpeg_process.stdout.read(1280 * 720 * 3) # Read raw BGR frame
if not raw_frame:
print("No frame received!")
break
frame = np.frombuffer(raw_frame, np.uint8).reshape((720, 1280, 3)).copy() # Make writable
# Run YOLOv8 object detection
results = model(frame)[0] # Get first result
for box in results.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
confidence = box.conf[0].item()
class_id = int(box.cls[0].item())
label = model.names[class_id]
if confidence > CONFIDENCE_THRESHOLD and label == "person":
roi = frame[y1:y2, x1:x2]
avg_color = np.mean(roi, axis=(0, 1), dtype=int) # Compute avg color
frame[y1:y2, x1:x2] = avg_color # Fill with avg color
# Encode and yield the frame as JPEG
_, buffer = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + buffer.tobytes() + b'\r\n')
@app.route('/video')
def video_feed():
"""Stream processed video frames."""
return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
print("Running at http://localhost:5000/video")
app.run(host='0.0.0.0', port=5000, debug=True, threaded=True)